Estimating prompt size in tokens
Neural networks work with texts by representing words and sentences as tokens.
AI Studio uses its own tokenizer for text processing. To calculate the token size of a text or prompt to a YandexGPT model, use the Tokenize method of the text generation API or Yandex Cloud ML SDK.
The token count of the same text may vary from one model to the next.
Getting started
To use the examples:
- Create a service account and assign the
ai.languageModels.userrole to it. -
Get and save the service account's API key with
yc.ai.foundationModels.executefor its scope.The following examples use API key authentication. Yandex Cloud ML SDK also supports IAM token and OAuth token authentication. For more information, see Authentication in Yandex Cloud ML SDK.
Note
If you are using Windows
, we recommend installing the WSL shell first and using it to proceed. -
Install Python 3.10
or higher. -
Install Python venv
to create isolated virtual environments in Python. -
Create a new Python virtual environment and activate it:
python3 -m venv new-env source new-env/bin/activate -
Use the pip
package manager to install the ML SDK library:pip install yandex-cloud-ml-sdk
Get API authentication credentials as described in Authentication with the Yandex AI Studio API.
To use the examples, install cURL
Calculating prompt size
The example below estimates the size of a prompt to a YandexGPT model.
-
Create a file named
token.pyand paste the following code into it:#!/usr/bin/env python3 from __future__ import annotations from yandex_cloud_ml_sdk import YCloudML messages = "Generative models are managed using prompts. A good prompt should contain the context of your request to the model (instruction) and the actual task the model should complete based on the provided context. The more specific your prompt is, the more accurate the model's output is going to be." def main(): sdk = YCloudML( folder_id="<folder_ID>", auth="<API_key>", ) model = sdk.models.completions("yandexgpt") result = model.tokenize(messages) for token in result: print(token) if __name__ == "__main__": main()Where:
Note
As input data for a request, Yandex Cloud ML SDK can accept a string, a dictionary, an object of the
TextMessageclass, or an array containing any combination of these data types. For more information, see Yandex Cloud ML SDK usage.messages: Message text.
-
<folder_ID>: ID of the folder in which the service account was created. -
<API_key>: Service account API key you got earlier required for authentication in the API.The following examples use API key authentication. Yandex Cloud ML SDK also supports IAM token and OAuth token authentication. For more information, see Authentication in Yandex Cloud ML SDK.
model: Model version value. For more information, see Accessing models.
-
Run the file you created:
python3 token.pyThe request will return a list of all received tokens.
Result
{"tokens": [{"id":"1","text":"\u003cs\u003e","special":true}, {"id":"6010","text":"▁Gener","special":false}, {"id":"1748","text":"ative","special":false}, {"id":"7789","text":"▁models","special":false}, {"id":"642","text":"▁are","special":false}, {"id":"15994","text":"▁managed","special":false}, {"id":"1772","text":"▁using","special":false}, {"id":"80536","text":"▁prompts","special":false}, {"id":"125820","text":".","special":false}, {"id":"379","text":"▁A","special":false}, {"id":"1967","text":"▁good","special":false}, {"id":"19099","text":"▁prompt","special":false}, {"id":"1696","text":"▁should","special":false}, {"id":"11195","text":"▁contain","special":false}, {"id":"292","text":"▁the","special":false}, {"id":"7210","text":"▁context","special":false}, {"id":"346","text":"▁of","special":false}, {"id":"736","text":"▁your","special":false}, {"id":"4104","text":"▁request","special":false}, {"id":"342","text":"▁to","special":false}, {"id":"292","text":"▁the","special":false}, {"id":"2718","text":"▁model","special":false}, {"id":"355","text":"▁(","special":false}, {"id":"105793","text":"instruction","special":false}, {"id":"125855","text":")","special":false}, {"id":"353","text":"▁and","special":false}, {"id":"292","text":"▁the","special":false}, {"id":"9944","text":"▁actual","special":false}, {"id":"7430","text":"▁task","special":false}, {"id":"292","text":"▁the","special":false}, {"id":"2718","text":"▁model","special":false}, {"id":"1696","text":"▁should","special":false}, {"id":"7052","text":"▁complete","special":false}, {"id":"4078","text":"▁based","special":false}, {"id":"447","text":"▁on","special":false}, {"id":"292","text":"▁the","special":false}, {"id":"6645","text":"▁provided","special":false}, {"id":"7210","text":"▁context","special":false}, {"id":"125820","text":".","special":false}, {"id":"671","text":"▁The","special":false}, {"id":"1002","text":"▁more","special":false}, {"id":"4864","text":"▁specific","special":false}, {"id":"736","text":"▁your","special":false}, {"id":"19099","text":"▁prompt","special":false}, {"id":"125827","text":",","special":false}, {"id":"292","text":"▁the","special":false}, {"id":"1002","text":"▁more","special":false}, {"id":"16452","text":"▁accurate","special":false}, {"id":"912","text":"▁will","special":false}, {"id":"460","text":"▁be","special":false}, {"id":"292","text":"▁the","special":false}, {"id":"4168","text":"▁results","special":false}, {"id":"13462","text":"▁returned","special":false}, {"id":"711","text":"▁by","special":false}, {"id":"292","text":"▁the","special":false}, {"id":"2718","text":"▁model","special":false}, {"id":"125820","text":".","special":false}, {"id":"3","text":"[NL]","special":true}, {"id":"29083","text":"▁Apart","special":false}, {"id":"728","text":"▁from","special":false}, {"id":"292","text":"▁the","special":false}, {"id":"19099","text":"▁prompt","special":false}, {"id":"125827","text":",","special":false}, {"id":"1303","text":"▁other","special":false}, {"id":"4104","text":"▁request","special":false}, {"id":"9513","text":"▁parameters","special":false}, {"id":"912","text":"▁will","special":false}, {"id":"8209","text":"▁impact","special":false}, {"id":"292","text":"▁the","special":false}, {"id":"2718","text":"▁model","special":false}, {"id":"125886","text":"'","special":false}, {"id":"125811","text":"s","special":false}, {"id":"5925","text":"▁output","special":false}, {"id":"2778","text":"▁too","special":false}, {"id":"125820","text":".","special":false}, {"id":"7597","text":"▁Use","special":false}, {"id":"12469","text":"▁Foundation","special":false}, {"id":"27947","text":"▁Models","special":false}, {"id":"118637","text":"▁Playground","special":false}, {"id":"2871","text":"▁available","special":false}, {"id":"728","text":"▁from","special":false}, {"id":"292","text":"▁the","special":false}, {"id":"7690","text":"▁management","special":false}, {"id":"15302","text":"▁console","special":false}, {"id":"342","text":"▁to","special":false}, {"id":"2217","text":"▁test","special":false}, {"id":"736","text":"▁your","special":false}, {"id":"14379","text":"▁requests","special":false}, {"id":"125820","text":".","special":false}], "modelVersion":"23.10.2024" }
-
Create a file named
tbody.jsonwith the request parameters:{ "modelUri": "gpt://<folder_ID>/yandexgpt", "text": "Generative models are managed using prompts. A good prompt should contain the context of your request to the model (instruction) and the actual task the model should complete based on the provided context. The more specific your prompt is, the more accurate the model's output is going to be." }Where
<folder_ID>is the ID of the Yandex Cloud folder for which your account has theai.languageModels.userrole or higher. -
Send a request to the model:
export IAM_TOKEN=<IAM_token> curl --request POST \ --header "Authorization: Bearer ${IAM_TOKEN}" \ --data "@tbody.json" \ "https://llm.api.cloud.yandex.net/foundationModels/v1/tokenize"Where:
<IAM_token>: Value of the IAM token you got for your account.tbody.json: JSON file with the request parameters.
The request will return a list of all received tokens.
Result
{"tokens": [{"id":"1","text":"\u003cs\u003e","special":true}, {"id":"6010","text":"▁Gener","special":false}, {"id":"1748","text":"ative","special":false}, {"id":"7789","text":"▁models","special":false}, {"id":"642","text":"▁are","special":false}, {"id":"15994","text":"▁managed","special":false}, {"id":"1772","text":"▁using","special":false}, {"id":"80536","text":"▁prompts","special":false}, {"id":"125820","text":".","special":false}, {"id":"379","text":"▁A","special":false}, {"id":"1967","text":"▁good","special":false}, {"id":"19099","text":"▁prompt","special":false}, {"id":"1696","text":"▁should","special":false}, {"id":"11195","text":"▁contain","special":false}, {"id":"292","text":"▁the","special":false}, {"id":"7210","text":"▁context","special":false}, {"id":"346","text":"▁of","special":false}, {"id":"736","text":"▁your","special":false}, {"id":"4104","text":"▁request","special":false}, {"id":"342","text":"▁to","special":false}, {"id":"292","text":"▁the","special":false}, {"id":"2718","text":"▁model","special":false}, {"id":"355","text":"▁(","special":false}, {"id":"105793","text":"instruction","special":false}, {"id":"125855","text":")","special":false}, {"id":"353","text":"▁and","special":false}, {"id":"292","text":"▁the","special":false}, {"id":"9944","text":"▁actual","special":false}, {"id":"7430","text":"▁task","special":false}, {"id":"292","text":"▁the","special":false}, {"id":"2718","text":"▁model","special":false}, {"id":"1696","text":"▁should","special":false}, {"id":"7052","text":"▁complete","special":false}, {"id":"4078","text":"▁based","special":false}, {"id":"447","text":"▁on","special":false}, {"id":"292","text":"▁the","special":false}, {"id":"6645","text":"▁provided","special":false}, {"id":"7210","text":"▁context","special":false}, {"id":"125820","text":".","special":false}, {"id":"671","text":"▁The","special":false}, {"id":"1002","text":"▁more","special":false}, {"id":"4864","text":"▁specific","special":false}, {"id":"736","text":"▁your","special":false}, {"id":"19099","text":"▁prompt","special":false}, {"id":"125827","text":",","special":false}, {"id":"292","text":"▁the","special":false}, {"id":"1002","text":"▁more","special":false}, {"id":"16452","text":"▁accurate","special":false}, {"id":"912","text":"▁will","special":false}, {"id":"460","text":"▁be","special":false}, {"id":"292","text":"▁the","special":false}, {"id":"4168","text":"▁results","special":false}, {"id":"13462","text":"▁returned","special":false}, {"id":"711","text":"▁by","special":false}, {"id":"292","text":"▁the","special":false}, {"id":"2718","text":"▁model","special":false}, {"id":"125820","text":".","special":false}, {"id":"3","text":"[NL]","special":true}, {"id":"29083","text":"▁Apart","special":false}, {"id":"728","text":"▁from","special":false}, {"id":"292","text":"▁the","special":false}, {"id":"19099","text":"▁prompt","special":false}, {"id":"125827","text":",","special":false}, {"id":"1303","text":"▁other","special":false}, {"id":"4104","text":"▁request","special":false}, {"id":"9513","text":"▁parameters","special":false}, {"id":"912","text":"▁will","special":false}, {"id":"8209","text":"▁impact","special":false}, {"id":"292","text":"▁the","special":false}, {"id":"2718","text":"▁model","special":false}, {"id":"125886","text":"'","special":false}, {"id":"125811","text":"s","special":false}, {"id":"5925","text":"▁output","special":false}, {"id":"2778","text":"▁too","special":false}, {"id":"125820","text":".","special":false}, {"id":"7597","text":"▁Use","special":false}, {"id":"12469","text":"▁Foundation","special":false}, {"id":"27947","text":"▁Models","special":false}, {"id":"118637","text":"▁Playground","special":false}, {"id":"2871","text":"▁available","special":false}, {"id":"728","text":"▁from","special":false}, {"id":"292","text":"▁the","special":false}, {"id":"7690","text":"▁management","special":false}, {"id":"15302","text":"▁console","special":false}, {"id":"342","text":"▁to","special":false}, {"id":"2217","text":"▁test","special":false}, {"id":"736","text":"▁your","special":false}, {"id":"14379","text":"▁requests","special":false}, {"id":"125820","text":".","special":false}], "modelVersion":"23.10.2024" }
See also
- Tokens
- Overview of Yandex AI Studio AI models
- Examples of working with ML SDK on GitHub