Yandex Cloud
Search
Contact UsGet started
  • Pricing
  • Customer Stories
  • Documentation
  • Blog
  • All Services
  • System Status
    • Featured
    • Infrastructure & Network
    • Data Platform
    • Containers
    • Developer tools
    • Serverless
    • Security
    • Monitoring & Resources
    • ML Services
    • Business tools
  • All Solutions
    • By industry
    • By use case
    • Economics and Pricing
    • Security
    • Technical Support
    • Start testing with double trial credits
    • Cloud credits to scale your IT product
    • Gateway to Russia
    • Cloud for Startups
    • Center for Technologies and Society
    • Yandex Cloud Partner program
  • Pricing
  • Customer Stories
  • Documentation
  • Blog
© 2025 Direct Cursus Technology L.L.C.
Yandex AI Studio
    • About Yandex AI Studio
      • Overview
      • Common instance models
      • Dedicated instance models
      • Batch processing
      • Function calling
      • Reasoning mode
      • Formatting model responses
      • Embeddings
      • Datasets
      • Fine-tuning
      • Tokens
    • Yandex Workflows
    • Quotas and limits
    • Terms and definitions
  • Compatibility with OpenAI
  • Access management
  • Pricing policy
  • Audit Trails events
  • Public materials
  • Release notes

In this article:

  • Example
  • Request parameters in Russian
  • Request parameters in English
  • Request structure
  1. Concepts
  2. Model Gallery
  3. Tokens

Tokens

Written by
Yandex Cloud
Updated at September 26, 2025
  • Example
    • Request parameters in Russian
    • Request parameters in English
    • Request structure

Neural networks work with texts by representing words and sentences as tokens. Tokens are logical fragments or frequently used character sequences that are common for a natural language. Tokens help neural networks detect patterns and process natural language.

Yandex AI Studio uses its own tokenizer for text processing. You can estimate the text field size in tokens using these special methods: Tokenizer or Yandex Cloud ML SDK. The token count of the same text may vary from one model to the next.

To use a Yandex AI Studio tokenizer, you need the ai.languageModels.user role or higher for the folder.

ExampleExample

Request parameters in RussianRequest parameters in Russian

  • Prompt text: Управление генеративными моделями осуществляется с помощью промтов. Эффективный промт должен содержать контекст запроса (инструкцию) для модели и непосредственно задание, которое модель должна выполнить, учитывая переданный контекст. Чем конкретнее составлен промт, тем более точными будут результаты работы модели.\n Кроме промта на результаты генерации моделей будут влиять и другие параметры запроса. Используйте AI Playground, доступный в консоли управления, чтобы протестировать ваши запросы.
  • Number of prompt characters: 497.
  • Number of prompt tokens: 86.
  • Model: YandexGPT Pro.

Request parameters in EnglishRequest parameters in English

  • Prompt text: Generative models are managed using prompts. A good prompt should contain the context of your request to the model (instruction) and the actual task the model should complete based on the provided context. The more specific your prompt, the more accurate will be the results returned by the model.\n Apart from the prompt, other request parameters will impact the model's output too. Use Foundation Models Playground available from the management console to test your requests.
  • Number of prompt characters: 477.
  • Number of prompt tokens: 89.
  • Model: YandexGPT Pro.

Request structureRequest structure

  1. Create a file named tbody.json with the request parameters:

    {
      "modelUri": "gpt://<folder_ID>/yandexgpt",
      "text": "Generative models are managed using prompts. A good prompt should contain the context of your request to the model (instruction) and the actual task the model should complete based on the provided context. The more specific your prompt, the more accurate will be the results returned by the model.\n Apart from the prompt, other request parameters will impact the model's output too. Use Foundation Models Playground available from the management console to test your requests."
    }
    

    Where <folder_ID> is the ID of the Yandex Cloud folder for which your account has the ai.languageModels.user role or higher.

  2. Send a request to the model:

    export IAM_TOKEN=<IAM_token>
    curl --request POST \
      --header "Authorization: Bearer ${IAM_TOKEN}" \
      --data "@tbody.json" \
      "https://llm.api.cloud.yandex.net/foundationModels/v1/tokenize"
    

    Where:

    • <IAM_token>: Value of the IAM token you got for your account.
    • tbody.json: JSON file with the request parameters.
Result
{"tokens":
    [{"id":"1","text":"\u003cs\u003e","special":true},
    {"id":"6010","text":"▁Gener","special":false},
    {"id":"1748","text":"ative","special":false},
    {"id":"7789","text":"▁models","special":false},
    {"id":"642","text":"▁are","special":false},
    {"id":"15994","text":"▁managed","special":false},
    {"id":"1772","text":"▁using","special":false},
    {"id":"80536","text":"▁prompts","special":false},
    {"id":"125820","text":".","special":false},
    {"id":"379","text":"▁A","special":false},
    {"id":"1967","text":"▁good","special":false},
    {"id":"19099","text":"▁prompt","special":false},
    {"id":"1696","text":"▁should","special":false},
    {"id":"11195","text":"▁contain","special":false},
    {"id":"292","text":"▁the","special":false},
    {"id":"7210","text":"▁context","special":false},
    {"id":"346","text":"▁of","special":false},
    {"id":"736","text":"▁your","special":false},
    {"id":"4104","text":"▁request","special":false},
    {"id":"342","text":"▁to","special":false},
    {"id":"292","text":"▁the","special":false},
    {"id":"2718","text":"▁model","special":false},
    {"id":"355","text":"▁(","special":false},
    {"id":"105793","text":"instruction","special":false},
    {"id":"125855","text":")","special":false},
    {"id":"353","text":"▁and","special":false},
    {"id":"292","text":"▁the","special":false},
    {"id":"9944","text":"▁actual","special":false},
    {"id":"7430","text":"▁task","special":false},
    {"id":"292","text":"▁the","special":false},
    {"id":"2718","text":"▁model","special":false},
    {"id":"1696","text":"▁should","special":false},
    {"id":"7052","text":"▁complete","special":false},
    {"id":"4078","text":"▁based","special":false},
    {"id":"447","text":"▁on","special":false},
    {"id":"292","text":"▁the","special":false},
    {"id":"6645","text":"▁provided","special":false},
    {"id":"7210","text":"▁context","special":false},
    {"id":"125820","text":".","special":false},
    {"id":"671","text":"▁The","special":false},
    {"id":"1002","text":"▁more","special":false},
    {"id":"4864","text":"▁specific","special":false},
    {"id":"736","text":"▁your","special":false},
    {"id":"19099","text":"▁prompt","special":false},
    {"id":"125827","text":",","special":false},
    {"id":"292","text":"▁the","special":false},
    {"id":"1002","text":"▁more","special":false},
    {"id":"16452","text":"▁accurate","special":false},
    {"id":"912","text":"▁will","special":false},
    {"id":"460","text":"▁be","special":false},
    {"id":"292","text":"▁the","special":false},
    {"id":"4168","text":"▁results","special":false},
    {"id":"13462","text":"▁returned","special":false},
    {"id":"711","text":"▁by","special":false},
    {"id":"292","text":"▁the","special":false},
    {"id":"2718","text":"▁model","special":false},
    {"id":"125820","text":".","special":false},
    {"id":"3","text":"[NL]","special":true},
    {"id":"29083","text":"▁Apart","special":false},
    {"id":"728","text":"▁from","special":false},
    {"id":"292","text":"▁the","special":false},
    {"id":"19099","text":"▁prompt","special":false},
    {"id":"125827","text":",","special":false},
    {"id":"1303","text":"▁other","special":false},
    {"id":"4104","text":"▁request","special":false},
    {"id":"9513","text":"▁parameters","special":false},
    {"id":"912","text":"▁will","special":false},
    {"id":"8209","text":"▁impact","special":false},
    {"id":"292","text":"▁the","special":false},
    {"id":"2718","text":"▁model","special":false},
    {"id":"125886","text":"'","special":false},
    {"id":"125811","text":"s","special":false},
    {"id":"5925","text":"▁output","special":false},
    {"id":"2778","text":"▁too","special":false},
    {"id":"125820","text":".","special":false},
    {"id":"7597","text":"▁Use","special":false},
    {"id":"12469","text":"▁Foundation","special":false},
    {"id":"27947","text":"▁Models","special":false},
    {"id":"118637","text":"▁Playground","special":false},
    {"id":"2871","text":"▁available","special":false},
    {"id":"728","text":"▁from","special":false},
    {"id":"292","text":"▁the","special":false},
    {"id":"7690","text":"▁management","special":false},
    {"id":"15302","text":"▁console","special":false},
    {"id":"342","text":"▁to","special":false},
    {"id":"2217","text":"▁test","special":false},
    {"id":"736","text":"▁your","special":false},
    {"id":"14379","text":"▁requests","special":false},
    {"id":"125820","text":".","special":false}],
"modelVersion":"23.10.2024"
}

Was the article helpful?

Previous
Fine-tuning
Next
Overview of AI agents
© 2025 Direct Cursus Technology L.L.C.