Yandex Cloud
Поиск
Связаться с намиПопробовать бесплатно
  • Истории успеха
  • Документация
  • Блог
  • Все сервисы
  • Статус работы сервисов
  • Marketplace
    • Доступны в регионе
    • Инфраструктура и сеть
    • Платформа данных
    • Искусственный интеллект
    • Безопасность
    • Инструменты DevOps
    • Бессерверные вычисления
    • Управление ресурсами
  • Все решения
    • По отраслям
    • По типу задач
    • Экономика платформы
    • Безопасность
    • Техническая поддержка
    • Каталог партнёров
    • Обучение и сертификация
    • Облако для стартапов
    • Облако для крупного бизнеса
    • Центр технологий для общества
    • Партнёрская программа
    • Поддержка IT-бизнеса
    • Облако для фрилансеров
    • Обучение и сертификация
    • Блог
    • Документация
    • Мероприятия и вебинары
    • Контакты, чаты и сообщества
    • Идеи
    • Калькулятор цен
    • Тарифы
    • Акции и free tier
  • Истории успеха
  • Документация
  • Блог
Создавайте контент и получайте гранты!Готовы написать своё руководство? Участвуйте в контент-программе и получайте гранты на работу с облачными сервисами!
Подробнее о программе
Проект Яндекса
© 2026 ТОО «Облачные Сервисы Казахстан»
Yandex AI Studio
  • О сервисе Yandex AI Studio
  • Начало работы с Model Gallery
  • Yandex Workflows
  • Переход с AI Assistant API на Responses API
  • Совместимость с OpenAI
  • Квоты и лимиты
  • Правила тарификации
  • Управление доступом
  • Аудитные логи Audit Trails
  • Публичные материалы
  • История изменений
  • Термины и определения

В этой статье:

  • class yandex_ai_studio_sdk._models.text_embeddings.function.AsyncTextEmbeddings
  • class yandex_ai_studio_sdk._models.text_embeddings.model.AsyncTextEmbeddingsModel

Domain

Статья создана
Yandex Cloud
Обновлена 28 января 2026 г.
  • class yandex_ai_studio_sdk._models.text_embeddings.function.AsyncTextEmbeddings
  • class yandex_ai_studio_sdk._models.text_embeddings.model.AsyncTextEmbeddingsModel

class yandexaistudiosdk.models.textembeddings.function.AsyncTextEmbeddingsclass yandex_ai_studio_sdk._models.text_embeddings.function.AsyncTextEmbeddings

A class for text embeddings models.

It provides the functionality to call a text embeddings model either by a well-known name or a full URI.

__call__(model_name, *, model_version='latest')

Call the specified model for text embeddings. It returns an instance of the specified type of the model.

This method constructs the URI for the model based on the provided name and version. If the name contains ://, it is treated as a full URI. Otherwise, it looks up the model name in the well-known names dictionary. But after this, in any case, we construct a URI in the form emb://<folder_id>//.

Parameters

  • model_name (str) – the name or URI of the model to call.
  • model_version (str) – the version of the model to use. Defaults to ‘latest’.

Return type

ModelTypeT

Model

class yandexaistudiosdk.models.textembeddings.model.AsyncTextEmbeddingsModelclass yandex_ai_studio_sdk._models.text_embeddings.model.AsyncTextEmbeddingsModel

A class for text embeddings models, providing configuration, request creation, and execution functionalities.

async run(text, *, timeout=60, dimensions=Undefined)

Run the model to generate text embeddings.

Parameters

  • text (str) – the input text for which embeddings are to be generated.
  • timeout – the timeout, or the maximum time to wait for the request to complete in seconds. Defaults to 60 seconds.
  • dimensions (int | Undefined) – the dimensions of output vector

Return type

TextEmbeddingsModelResult

async tune_deferred(train_datasets, *, embeddings_tune_type, validation_datasets=Undefined, name=Undefined, description=Undefined, labels=Undefined, seed=Undefined, lr=Undefined, n_samples=Undefined, additional_arguments=Undefined, dimensions=Undefined, tuning_type=Undefined, scheduler=Undefined, optimizer=Undefined, timeout=60)

Initiate a deferred tuning process for the model.

Parameters

  • train_datasets (str | BaseDataset | tuple[str | BaseDataset, float] | Iterable[str | BaseDataset | tuple[str | BaseDataset, float]] | dict[str | BaseDataset, float]) – the dataset objects and/or dataset ids used for training of the model.
  • embeddings_tune_type (Literal['pair', 'triplet']) – the type of tuning to be applied (e.g. pair or triplet).
  • validation_datasets (str | BaseDataset | tuple[str | BaseDataset, float] | Iterable[str | BaseDataset | tuple[str | BaseDataset, float]] | dict[str | BaseDataset, float] | Undefined) – the dataset objects and/or dataset ids used for validation of the model.
  • name (str | Undefined) – the name of the tuning task.
  • description (str | Undefined) – the description of the tuning task.
  • labels (dict[str, str] | Undefined) – labels for the tuning task.
  • seed (int | Undefined) – a random seed for reproducibility.
  • lr (float | Undefined) – a learning rate for tuning.
  • n_samples (int | Undefined) – a number of samples for tuning.
  • additional_arguments (str | Undefined) – additional arguments for tuning.
  • dimensions (Sequence[int] | Undefined) – dimensions for the embeddings.
  • tuning_type (BaseTuningType | Undefined) – a type of tuning to be applied.
  • scheduler (BaseScheduler | Undefined) – a scheduler for tuning.
  • optimizer (BaseOptimizer | Undefined) – an optimizer for tuning.
  • timeout (float) – the timeout, or the maximum time to wait for the request to complete in seconds. Defaults to 60 seconds.

Return type

AsyncTuningTask[AsyncTextEmbeddingsModel]

async tune(train_datasets, *, embeddings_tune_type, validation_datasets=Undefined, name=Undefined, description=Undefined, labels=Undefined, seed=Undefined, lr=Undefined, n_samples=Undefined, additional_arguments=Undefined, dimensions=Undefined, tuning_type=Undefined, scheduler=Undefined, optimizer=Undefined, timeout=60, poll_timeout=259200, poll_interval=60)

Tune the model with the specified training datasets and parameters.

Parameters

  • train_datasets (str | BaseDataset | tuple[str | BaseDataset, float] | Iterable[str | BaseDataset | tuple[str | BaseDataset, float]] | dict[str | BaseDataset, float]) – the dataset objects and/or dataset ids used for training of the model.
  • embeddings_tune_type (Literal['pair', 'triplet']) – the type of tuning to be applied (e.g. pair or triplet).
  • validation_datasets (str | BaseDataset | tuple[str | BaseDataset, float] | Iterable[str | BaseDataset | tuple[str | BaseDataset, float]] | dict[str | BaseDataset, float] | Undefined) – the dataset objects and/or dataset ids used for validation of the model.
  • name (str | Undefined) – the name of the tuning task.
  • description (str | Undefined) – the description of the tuning task.
  • labels (dict[str, str] | Undefined) – labels for the tuning task.
  • seed (int | Undefined) – a random seed for reproducibility.
  • lr (float | Undefined) – a learning rate for tuning.
  • n_samples (int | Undefined) – a number of samples for tuning.
  • additional_arguments (str | Undefined) – additional arguments for tuning.
  • dimensions (Sequence[int] | Undefined) – dimensions for the embeddings.
  • tuning_type (BaseTuningType | Undefined) – a type of tuning to be applied.
  • scheduler (BaseScheduler | Undefined) – a scheduler for tuning.
  • optimizer (BaseOptimizer | Undefined) – an optimizer for tuning.
  • timeout (float) – the timeout, or the maximum time to wait for the request to complete in seconds. Defaults to 60 seconds.
  • poll_timeout (int) – the maximum time to wait while polling for completion of the tuning task. Defaults to 259200 seconds (72 hours).
  • poll_interval (float) – the interval between polling attempts during the tuning process. Defaults to 60 seconds.

Return type

Self

async attach_tune_deferred(task_id, *, timeout=60)

Attach a deferred tuning task using its task ID.

Parameters

  • task_id (str) – the ID of the deferred tuning task to attach to.
  • timeout (float) – the timeout, or the maximum time to wait for the request to complete in seconds. Defaults to 60 seconds.

Return type

AsyncTuningTask[AsyncTextEmbeddingsModel]

property config: ConfigTypeT

configure(*, dimensions=Undefined)

This method calls the parent class’s configure method and returns the configured model instance.

Parameters

dimensions (int | Undefined) – the dimensions of output vector

Return type

Self

property fine_tuned: bool | None

property name: str | None

property owner: str | None

property uri: str

property version: str | None

Была ли статья полезна?

Создавайте контент и получайте гранты!Готовы написать своё руководство? Участвуйте в контент-программе и получайте гранты на работу с облачными сервисами!
Подробнее о программе
Проект Яндекса
© 2026 ТОО «Облачные Сервисы Казахстан»