Yandex Cloud
Поиск
Связаться с намиПодключиться
  • Истории успеха
  • Документация
  • Блог
  • Все сервисы
  • Статус работы сервисов
    • Популярные
    • Инфраструктура и сеть
    • Платформа данных
    • Контейнеры
    • Инструменты разработчика
    • Бессерверные вычисления
    • Безопасность
    • Мониторинг и управление ресурсами
    • ИИ для бизнеса
    • Бизнес-инструменты
  • Все решения
    • По отраслям
    • По типу задач
    • Экономика платформы
    • Безопасность
    • Техническая поддержка
    • Каталог партнёров
    • Обучение и сертификация
    • Облако для стартапов
    • Облако для крупного бизнеса
    • Центр технологий для общества
    • Облако для интеграторов
    • Поддержка IT-бизнеса
    • Облако для фрилансеров
    • Обучение и сертификация
    • Блог
    • Документация
    • Контент-программа
    • Мероприятия и вебинары
    • Контакты, чаты и сообщества
    • Идеи
    • Калькулятор цен
    • Тарифы
    • Промоакции и free tier
    • Правила тарификации
  • Истории успеха
  • Документация
  • Блог
Проект Яндекса
© 2025 ООО «Яндекс.Облако»
Yandex AI Studio
  • Начало работы с Model Gallery
    • О сервисе Yandex AI Studio
    • Yandex Workflows
    • Квоты и лимиты
    • Термины и определения
  • Переход с AI Assistant API на Responses API
  • Совместимость с OpenAI
  • Управление доступом
  • Правила тарификации
  • Аудитные логи Audit Trails
  • Публичные материалы
  • История изменений

В этой статье:

  • class yandex_cloud_ml_sdk._models.text_embeddings.function.TextEmbeddings
  • class yandex_cloud_ml_sdk._models.text_embeddings.model.TextEmbeddingsModel

Domain

Статья создана
Yandex Cloud
Обновлена 25 августа 2025 г.
  • class yandex_cloud_ml_sdk._models.text_embeddings.function.TextEmbeddings
  • class yandex_cloud_ml_sdk._models.text_embeddings.model.TextEmbeddingsModel

class yandexcloudmlsdk.models.textembeddings.function.TextEmbeddingsclass yandex_cloud_ml_sdk._models.text_embeddings.function.TextEmbeddings

A class for text embeddings models.

It provides the functionality to call a text embeddings model either by a well-known name or a full URI.

__call__(model_name, *, model_version='latest')

Call the specified model for text embeddings. It returns an instance of the specified type of the model.

This method constructs the URI for the model based on the provided name and version. If the name contains ://, it is treated as a full URI. Otherwise, it looks up the model name in the well-known names dictionary. But after this, in any case, we construct a URI in the form emb://<folder_id>//.

Parameters

  • model_name (str) – the name or URI of the model to call.
  • model_version (str) – the version of the model to use. Defaults to ‘latest’.

Model

class yandexcloudmlsdk.models.textembeddings.model.TextEmbeddingsModelclass yandex_cloud_ml_sdk._models.text_embeddings.model.TextEmbeddingsModel

A class for text embeddings models, providing configuration, request creation, and execution functionalities.

run(text, *, timeout=60)

Run the model to generate text embeddings.

Parameters

  • text (str) – the input text for which embeddings are to be generated.
  • timeout – the timeout, or the maximum time to wait for the request to complete in seconds. Defaults to 60 seconds.

Return type

TextEmbeddingsModelResult

tune_deferred(train_datasets, *, embeddings_tune_type, validation_datasets=Undefined, name=Undefined, description=Undefined, labels=Undefined, seed=Undefined, lr=Undefined, n_samples=Undefined, additional_arguments=Undefined, dimensions=Undefined, tuning_type=Undefined, scheduler=Undefined, optimizer=Undefined, timeout=60)

Initiate a deferred tuning process for the model.

Parameters

  • train_datasets (str | BaseDataset | tuple[str | BaseDataset, float] | Iterable[str | BaseDataset | tuple[str | BaseDataset, float]] | dict[str | BaseDataset, float]) – the dataset objects and/or dataset ids used for training of the model.
  • embeddings_tune_type (Literal['pair', 'triplet']) – the type of tuning to be applied (e.g. pair or triplet).
  • validation_datasets (str | BaseDataset | tuple[str | BaseDataset, float] | Iterable[str | BaseDataset | tuple[str | BaseDataset, float]] | dict[str | BaseDataset, float] | Undefined) – the dataset objects and/or dataset ids used for validation of the model.
  • name (str | Undefined) – the name of the tuning task.
  • description (str | Undefined) – the description of the tuning task.
  • labels (dict[str, str] | Undefined) – labels for the tuning task.
  • seed (int | Undefined) – a random seed for reproducibility.
  • lr (float | Undefined) – a learning rate for tuning.
  • n_samples (int | Undefined) – a number of samples for tuning.
  • additional_arguments (str | Undefined) – additional arguments for tuning.
  • dimensions (Sequence[int] | Undefined) – dimensions for the embeddings.
  • tuning_type (BaseTuningType | Undefined) – a type of tuning to be applied.
  • scheduler (BaseScheduler | Undefined) – a scheduler for tuning.
  • optimizer (BaseOptimizer | Undefined) – an optimizer for tuning.
  • timeout (float) – the timeout, or the maximum time to wait for the request to complete in seconds. Defaults to 60 seconds.

Return type

TuningTask[TextEmbeddingsModel]

tune(train_datasets, *, embeddings_tune_type, validation_datasets=Undefined, name=Undefined, description=Undefined, labels=Undefined, seed=Undefined, lr=Undefined, n_samples=Undefined, additional_arguments=Undefined, dimensions=Undefined, tuning_type=Undefined, scheduler=Undefined, optimizer=Undefined, timeout=60, poll_timeout=259200, poll_interval=60)

Tune the model with the specified training datasets and parameters.

Parameters

  • train_datasets (str | BaseDataset | tuple[str | BaseDataset, float] | Iterable[str | BaseDataset | tuple[str | BaseDataset, float]] | dict[str | BaseDataset, float]) – the dataset objects and/or dataset ids used for training of the model.
  • embeddings_tune_type (Literal['pair', 'triplet']) – the type of tuning to be applied (e.g. pair or triplet).
  • validation_datasets (str | BaseDataset | tuple[str | BaseDataset, float] | Iterable[str | BaseDataset | tuple[str | BaseDataset, float]] | dict[str | BaseDataset, float] | Undefined) – the dataset objects and/or dataset ids used for validation of the model.
  • name (str | Undefined) – the name of the tuning task.
  • description (str | Undefined) – the description of the tuning task.
  • labels (dict[str, str] | Undefined) – labels for the tuning task.
  • seed (int | Undefined) – a random seed for reproducibility.
  • lr (float | Undefined) – a learning rate for tuning.
  • n_samples (int | Undefined) – a number of samples for tuning.
  • additional_arguments (str | Undefined) – additional arguments for tuning.
  • dimensions (Sequence[int] | Undefined) – dimensions for the embeddings.
  • tuning_type (BaseTuningType | Undefined) – a type of tuning to be applied.
  • scheduler (BaseScheduler | Undefined) – a scheduler for tuning.
  • optimizer (BaseOptimizer | Undefined) – an optimizer for tuning.
  • timeout (float) – the timeout, or the maximum time to wait for the request to complete in seconds. Defaults to 60 seconds.
  • poll_timeout (int) – the maximum time to wait while polling for completion of the tuning task. Defaults to 259200 seconds (72 hours).
  • poll_interval (float) – the interval between polling attempts during the tuning process. Defaults to 60 seconds.

Return type

Self

attach_tune_deferred(task_id, *, timeout=60)

Attach a deferred tuning task using its task ID.

Parameters

  • task_id (str) – the ID of the deferred tuning task to attach to.
  • timeout (float) – the timeout, or the maximum time to wait for the request to complete in seconds. Defaults to 60 seconds.

Return type

TuningTask[TextEmbeddingsModel]

property config: ConfigTypeT

configure()

This method calls the parent class’s configure method and returns the configured model instance.

Return type

Self

property uri: str

Была ли статья полезна?

Проект Яндекса
© 2025 ООО «Яндекс.Облако»