Yandex Cloud
Search
Contact UsGet started
  • Pricing
  • Customer Stories
  • Documentation
  • Blog
  • All Services
  • System Status
    • Featured
    • Infrastructure & Network
    • Data Platform
    • Containers
    • Developer tools
    • Serverless
    • Security
    • Monitoring & Resources
    • AI for business
    • Business tools
  • All Solutions
    • By industry
    • By use case
    • Economics and Pricing
    • Security
    • Technical Support
    • Start testing with double trial credits
    • Cloud credits to scale your IT product
    • Gateway to Russia
    • Cloud for Startups
    • Center for Technologies and Society
    • Yandex Cloud Partner program
  • Pricing
  • Customer Stories
  • Documentation
  • Blog
© 2025 Direct Cursus Technology L.L.C.
Yandex StoreDoc
  • Getting started
    • Resource relationships
      • Active host classes
      • Using deprecated host classes
    • Networking in Yandex StoreDoc
    • Quotas and limits
    • Storage in Yandex StoreDoc
    • Backups
    • Replication and fault tolerance
    • Sharding
    • Users and roles
    • Maintenance
    • Supported clients
    • Yandex StoreDoc settings
  • Access management
  • Pricing policy
  • Terraform reference
  • Monitoring metrics
  • Audit Trails events
  • Public materials
  • Release notes
  1. Concepts
  2. Host classes
  3. Active host classes

Yandex StoreDoc host classes

Written by
Yandex Cloud
Updated at November 26, 2025

The host class determines the computing power allocated for each host in a cluster. When you change the host class for a cluster, all existing hosts change accordingly.

The host class determines the available disk types:

  • s1, s2, s3, m2, m3, c3: network-ssd, network-hdd, local-ssd, network-ssd-nonreplicated, network-ssd-io-m3.
  • b1, b2, b3: network-ssd, network-hdd.

For storage size limitations, see Quotas and limits.

Available host classesAvailable host classes

Hosts in Yandex StoreDoc clusters are deployed on Yandex Compute Cloud VMs. You can create these VMs on any platforms Compute Cloud supports. To learn more about the platforms, see Platforms.

The full list of possible host configurations on each platform is provided below.

Note

Not available for clusters with hosts residing in the ru-central1-d availability zone:

  • Intel Broadwell platform
  • Local SSD storage if using Intel Cascade Lake

Alert

Starting January 1, 2024, the following existing host classes are deprecated: b1.nano, b1.micro, b1.small, b2.nano, b2.micro, and b2.small. New hosts of these classes cannot be created since June 20, 2023.

Configuration types:

  • s1, s2, s3: Standard configurations with 4:1 RAM GB to vCPU ratio.

  • m2, m3: Configurations with an increased RAM GB to vCPU ratio (8:1). These configurations may be useful for clusters with higher cache requirements.

  • c3: Configurations with a reduced RAM GB to vCPU ratio (2:1). These configurations may be useful for clusters with higher processor performance requirements.

  • b1, b2, b3: Configurations with a guaranteed vCPU share under 100%. This host class is intended for test load, while the minimum recommended host configuration for production solutions is two vCPUs with a guaranteed share of 50%.

    Note

    Hosts with a guaranteed vCPU share under 50% cannot be used in multi-host clusters.

Host class name Number of CPUs CPU performance RAM, GB Disk
size, GB
Intel Broadwell
b1.medium 2 50% 4 10 – 512
s1.micro 2 100% 8 10 – 2,232
s1.small 4 100% 16 10 – 2,232
s1.medium 8 100% 32 10 – 2,232
s1.large 16 100% 64 10 – 2,232
s1.xlarge 32 100% 128 10 – 2,232
Intel Cascade Lake
b2.medium 2 50% 4 10 – 512
m2.micro 2 100% 16 10 – 2,232
m2.small 4 100% 32 10 – 2,232
m2.medium 6 100% 48 10 – 2,232
m2.large 8 100% 64 10 – 2,232
m2.xlarge 12 100% 96 10 – 2,232
m2.2xlarge 16 100% 128 10 – 2,232
m2.3xlarge 24 100% 192 10 – 2,232
m2.4xlarge 32 100% 256 10 – 2,232
m2.5xlarge 40 100% 320 10 – 2,232
m2.6xlarge 48 100% 384 10 – 2,232
m2.7xlarge 56 100% 448 10 – 2,232
m2.8xlarge 64 100% 512 10 – 2,232
s2.micro 2 100% 8 10 – 2,232
s2.small 4 100% 16 10 – 2,232
s2.medium 8 100% 32 10 – 2,232
s2.large 12 100% 48 10 – 2,232
s2.xlarge 16 100% 64 10 – 2,232
s2.2xlarge 24 100% 96 10 – 2,232
s2.3xlarge 32 100% 128 10 – 2,232
s2.4xlarge 40 100% 160 10 – 2,232
s2.5xlarge 48 100% 192 10 – 2,232
s2.6xlarge 64 100% 256 10 – 2,232
Intel Ice Lake
b3-c1-m4 2 50% 4 10 – 512
s3-c2-m8 2 100% 8 10 – 2,232
s3-c4-m16 4 100% 16 10 – 2,232
s3-c8-m32 8 100% 32 10 – 2,232
s3-c12-m48 12 100% 48 10 – 2,232
s3-c16-m64 16 100% 64 10 – 2,232
s3-c24-m96 24 100% 96 10 – 2,232
s3-c32-m128 32 100% 128 10 – 2,232
s3-c40-m160 40 100% 160 10 – 2,232
s3-c48-m192 48 100% 192 10 – 2,232
s3-c64-m256 64 100% 256 10 – 2,232
s3-c80-m320 80 100% 320 10 – 2,232
s3-c96-m576 96 100% 576 10 – 2,232
m3-c2-m16 2 100% 16 10 – 2,232
m3-c4-m32 4 100% 32 10 – 2,232
m3-c6-m48 6 100% 48 10 – 2,232
m3-c8-m64 8 100% 64 10 – 2,232
m3-c12-m96 12 100% 96 10 – 2,232
m3-c16-m128 16 100% 128 10 – 2,232
m3-c24-m192 24 100% 192 10 – 2,232
m3-c32-m256 32 100% 256 10 – 2,232
m3-c40-m320 40 100% 320 10 – 2,232
m3-c48-m384 48 100% 384 10 – 2,232
m3-c56-m448 56 100% 448 10 – 2,232
m3-c64-m512 64 100% 512 10 – 2,232
m3-c80-m640 80 100% 640 10 – 2,232
c3-c2-m4 2 100% 4 10 – 2,232
c3-c4-m8 4 100% 8 10 – 2,232
c3-c8-m16 8 100% 16 10 – 2,232
c3-c12-m24 12 100% 24 10 – 2,232
c3-c16-m32 16 100% 32 10 – 2,232
c3-c24-m48 24 100% 48 10 – 2,232
c3-c32-m64 32 100% 64 10 – 2,232
c3-c40-m80 40 100% 80 10 – 2,232
c3-c48-m96 48 100% 96 10 – 2,232
c3-c64-m128 64 100% 128 10 – 2,232
c3-c80-m160 80 100% 160 10 – 2,232
c3-c96-m192 96 100% 192 10 – 2,232
AMD Zen 4
s4a-c2-m8 2 100% 8 10 – 5,888
s4a-c4-m16 4 100% 16 10 – 5,888
s4a-c8-m32 8 100% 32 10 – 5,888
s4a-c12-m48 12 100% 48 10 – 5,888
s4a-c16-m64 16 100% 64 10 – 5,888
s4a-c32-m128 32 100% 128 10 – 5,888
s4a-c64-m256 64 100% 256 10 – 5,888
s4a-c96-m384 96 100% 384 10 – 5,888
s4a-c128-m512 128 100% 512 10 – 5,888
s4a-c224-m896 224 100% 896 10 – 5,888
s4a-c256-m1024 256 100% 1,024 10 – 5,888
c4a-c2-m4 2 100% 4 10 – 5,888
c4a-c4-m8 4 100% 8 10 – 5,888
c4a-c8-m16 8 100% 16 10 – 5,888
c4a-c16-m32 16 100% 32 10 – 5,888
c4a-c32-m64 32 100% 64 10 – 5,888
c4a-c64-m128 64 100% 128 10 – 5,888
c4a-c96-m192 96 100% 192 10 – 5,888
c4a-c128-m256 128 100% 256 10 – 5,888
c4a-c224-m448 224 100% 448 10 – 5,888
c4a-c256-m512 256 100% 512 10 – 5,888
m4a-c2-m16 2 100% 16 10 – 5,888
m4a-c4-m32 4 100% 32 10 – 5,888
m4a-c8-m64 8 100% 64 10 – 5,888
m4a-c16-m128 16 100% 128 10 – 5,888
m4a-c32-m256 32 100% 256 10 – 5,888
m4a-c64-m512 64 100% 512 10 – 5,888
m4a-c96-m768 96 100% 768 10 – 5,888
m4a-c128-m1024 128 100% 1,024 10 – 5,888
m4a-c224-m1792 224 100% 1,792 10 – 5,888
AMD Zen 4 HighFreq
s4af-c2-m8 2 100% 8 10 – 2,232
s4af-c4-m16 4 100% 16 10 – 2,232
s4af-c8-m32 8 100% 32 10 – 2,232
s4af-c16-m64 16 100% 64 10 – 2,232
s4af-c32-m128 32 100% 128 10 – 2,232
s4af-c48-m192 48 100% 192 10 – 2,232
s4af-c80-m320 80 100% 320 10 – 2,232
c4af-c2-m4 2 100% 4 10 – 2,232
c4af-c4-m8 4 100% 8 10 – 2,232
c4af-c8-m16 8 100% 16 10 – 2,232
c4af-c16-m32 16 100% 32 10 – 2,232
c4af-c32-m64 32 100% 64 10 – 2,232
c4af-c48-m96 48 100% 96 10 – 2,232
c4af-c80-m160 80 100% 160 10 – 2,232
m4af-c2-m16 2 100% 16 10 – 2,232
m4af-c4-m32 4 100% 32 10 – 2,232
m4af-c8-m64 8 100% 64 10 – 2,232
m4af-c16-m128 16 100% 128 10 – 2,232
m4af-c32-m256 32 100% 256 10 – 2,232
m4af-c48-m384 48 100% 384 10 – 2,232
m4af-c80-m640 80 100% 640 10 – 2,232

Was the article helpful?

Previous
Resource relationships
Next
Before June 1, 2020
© 2025 Direct Cursus Technology L.L.C.