Kolmogorov.ai Predicate

Updated February 10, 2025

Kolmogorov.ai Predicate — an application for performing monitoring or quantitative validation, which enables the organization of a monitoring project based on a vast library of metrics and allows the creation of a validation report from multiple projects.

Configure monitoring projects from statistical and business metrics. The Predicate Metrics Catalog contains a wide array of built-in metrics, as well as allows for the addition of custom calculation algorithms for indicators.

Predicate provides the following functionality:

  • A catalog of validation and monitoring projects.
  • A catalog of metrics with Plotly visualizations, addition of custom Python metrics.
  • A pre-configured package of standard model quality assessment metrics (including data / concept drift), as well as metrics specific to subject areas like credit risk, operational risk, and customer analytics.
  • Scheduled project execution according to a set regimen.
  • A catalog of template projects for standard monitoring and validation.
  • A GUI for constructing validation reports.
  • The ability to add custom preprocessing code to the execution of monitoring/validation projects (for example, ad-hoc model application, factor calculation, etc.).
Deployment instructions

1. Prerequisites

Components that are not included in the default delivery of the Predicate application but are required for its operation:

  • Kubernetes-compatible cluster with the ability to create a separate namespace. In this namespace — the ability to create a service account with CRUD rights for all basic types of objects. Minimum resource quota — 8CPU, 16GB RAM, 100GB disk space. Additionally, the following components are required in the cluster:
    • NFS StorageClass — RWM storage class in Kubernetes that uses an NFS server.
    • Ingress Controller — a controller that provides access to Kubernetes services from outside.
  • Keycloak — a service for authorization and authentication using Keycloak.
  • S3 storage (Minio or Yandex Object Storage) — storage where temporary files and metric results are saved. In this storage, there should be the ability to create a separate bucket. In this bucket — a service account with the role of storage.editor or storage.admin (GET/UPDATE/DELETE objects).#### 2. Installation and Configuration of Components

2. Installation and configuration of components and cluster

3. Instruction for checking Predicate’s operability.

Billing type
Paid by subscriptions
Type
Kubernetes® Application
Category
Analytics
Business applications
In the Russian software register
ML & AI
Publisher
Data Sapience
Use cases
  • Rapid generation of modeling results reports for communication with key project participants and stakeholders.
  • Automation of quantitative validation tasks.
  • Operational dashboards for scheduled monitoring of models and solutions in an industrial format.
  • Standardization and templating of monitoring regulations for diverse scenarios.
  • Setting up notifications and triggers for automatic calibration and retraining based on a flexible traffic light system.
Technical support

You can reach out to technical support via email at contact@kolmogorov.ai

Product composition
Helm chartVersion
Pull-command
Documentation
datasapience/kolmogorovai-predicate/charts/predicate2.1.2Open
Docker imageVersion
Pull-command
datasapience/kolmogorovai-predicate/predicate17392010238655320279903097229665920187142614691442.1.2
datasapience/kolmogorovai-predicate/predicate-ui17392010238655320279903097229665920187142614691442.1.2
datasapience/kolmogorovai-predicate/bitnami-rabbitmq17392010238655320279903097229665920187142614691443.13
datasapience/kolmogorovai-predicate/bitnami-postgresql173920102386553202799030972296659201871426146914414
Terms
By using this product you agree to the Yandex Cloud Marketplace Terms of Service
Billing type
Paid by subscriptions
Type
Kubernetes® Application
Category
Analytics
Business applications
In the Russian software register
ML & AI
Publisher
Data Sapience