Uploading chat conversations
You can upload text messages from a customer's, support agent's, or bot's chat conversations using the SpeechSense API. This will allow you to analyze the messages, e.g., in SpeechSense reports.
Text messages must be submitted in JSON format. To upload data, you will also need a separate JSON file with conversation metadata.
An IAM token or IAM key is used to authenticate the service account.
If you want to upload the voice call audio instead of chat text, follow this guide.
Getting started
To use the Yandex Cloud API, you will need Git, Python 3.6 or higher, and the grpcio-tools
package. Learn how to install Python
Prepare to upload a chat conversation:
-
Create a connection of the Chat type.
If you want to upload linked conversations, add the
ticket_id
string key in the general metadata for your connection. The chats will be linked by this key. -
Create a project with the new connection.
Text messages will be uploaded to the project and connection you created.
-
In the management console, create a service account.
-
Add the service account to the namespace with the
Data editor
role. This will allow the service account to upload data to SpeechSense. -
To authenticate to the Yandex Cloud API, create an API key or IAM token for the service account.
-
Clone the Yandex Cloud API repository
:git clone https://github.com/yandex-cloud/cloudapi
-
Install the
grpcio-tools
package using the pip package manager:pip install grpcio-tools
Uploading data
-
Go to the folder hosting the Yandex Cloud API repository, create a folder named
upload_data
, and generate the client interface code in it. Then open theupload_data
folder:Bashcd <path_to_cloudapi_directory> && \ mkdir upload_data && \ python3 -m grpc_tools.protoc -I . -I third_party/googleapis \ --python_out=./upload_data/ \ --grpc_python_out=./upload_data/ \ google/api/http.proto \ google/api/annotations.proto \ yandex/cloud/api/operation.proto \ google/rpc/status.proto \ yandex/cloud/operation/operation.proto \ yandex/cloud/validation.proto \ yandex/cloud/speechsense/v1/*.proto \ yandex/cloud/speechsense/v1/*/*.proto cd upload_data
-
In the
upload_data
folder, create theupload_text.py
Python script to upload the chat conversation to SpeechSense:import argparse import json from typing import Dict import grpc from yandex.cloud.speechsense.v1 import talk_service_pb2 from yandex.cloud.speechsense.v1 import talk_service_pb2_grpc from yandex.cloud.speechsense.v1 import text_pb2 from google.protobuf.timestamp_pb2 import Timestamp # For IAM token authentication, replace the `api_key` parameter with `iam_token` def upload_talk(connection_id: str, metadata: Dict[str, str], api_key: str, text_data): credentials = grpc.ssl_channel_credentials() channel = grpc.secure_channel('api.speechsense.yandexcloud.net:443', credentials) talk_service_stub = talk_service_pb2_grpc.TalkServiceStub(channel) messageList = [] for message in text_data['messages']: timestamp = Timestamp() timestamp.FromJsonString(value=str(message['timestamp'])) messageProto = text_pb2.Message( user_id=str(message['user_id']), text=text_pb2.TextPayload(text=str(message['text'])), timestamp=timestamp ) messageList.append(messageProto) # Forming a request to the API request = talk_service_pb2.UploadTextRequest( metadata=talk_service_pb2.TalkMetadata( connection_id=str(connection_id), fields=metadata), text_content=text_pb2.TextContent( messages=messageList) ) # Authentication type: API key response = talk_service_stub.UploadText(request, metadata=( ('authorization', f'Api-Key {api_key}'), # For IAM token authentication, provide the header # ('authorization', f'Bearer {iam_token}'), )) # Displaying the dialog ID print(f'Dialog ID: {response.talk_id}') if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--key', required=True, help='API key or IAM token', type=str) parser.add_argument('--connection-id', required=True, help='Connection ID', type=str) parser.add_argument('--text-path', required=True, help='JSON with text chat data', type=str) parser.add_argument('--meta-path', required=False, help='JSON with the dialog metadata', type=str, default=None) args = parser.parse_args() with open(args.meta_path, 'r') as fp: metadata = json.load(fp) with open(args.text_path, 'r') as fp: text_data = json.load(fp) upload_talk(args.connection_id, metadata, args.key, text_data)
-
In the
upload_data
folder, create a file namedmetadata.json
with your conversation metadata:{ "operator_name": "<agent_name>", "operator_id": "<agent_ID>", "client_name": "<customer_name>", "client_id": "<customer_ID>", "bot_name": "<bot_name>", "bot_id": "<bot_ID>", "date": "<start_date>", "direction_outgoing": "<outgoing_direction:_true_or_false>", "language": "<language>", <additional_connection_parameters> }
Set the
date
field value inYYYY-MM-DDTHH:MM:SS.SSS
format.The file's fields must match the parameters of the connection you are uploading text messages to. The template above shows the required fields for Chat type connections. If you added other parameters to the connection, specify them in the
metadata.json
file; e.g., to upload linked chats, add the following parameter to your file:{ ... "ticket_id": "task_number" }
-
In the
upload_data
folder, create a file namedchat.json
with your text messages in the following format:{ "messages": [ { "user_id": <message_sender_ID>, "text" : "<text_message>", "timestamp" : "<message_send_time>" }, ... ] }
Where:
messages
: Array of text messages. For each message, create a separate object in this array.user_id
: ID of the message sender. The ID must match the ID of the customer, agent, or bot in the JSON file with metadata.timestamp
: Message send time. Use theYYYY-MM-DDTHH:MM:SS.SSSZ
time format.
-
Specify the service account's API key:
export API_KEY=<service_account_API_key>
If using an IAM token, provide it instead of the API key:
export IAM_TOKEN=<service_account_IAM_token>
-
Run the
upload_text.py
script with the parameters you need:python3 upload_text.py \ --text-path chat.json \ --meta-path metadata.json \ --connection-id <connection_ID> \ --key ${API_KEY}
Where:
--text-path
: Path to the conversation file.--meta-path
: Path to the conversation metadata file.--connection-id
: ID of the connection you upload the data to.--key
: API key for authentication. If using an IAM token, specify theIAM_TOKEN
environment variable instead ofAPI_KEY
.
-
From the SpeechSense home page
, go to the page of the project you created for text messages. Make sure that you can see the uploaded conversation in the Dialogs tab.