Yandex Cloud
Search
Contact UsGet started
  • Blog
  • Pricing
  • Documentation
  • All Services
  • System Status
    • Featured
    • Infrastructure & Network
    • Data Platform
    • Containers
    • Developer tools
    • Serverless
    • Security
    • Monitoring & Resources
    • ML & AI
    • Business tools
  • All Solutions
    • By industry
    • By use case
    • Economics and Pricing
    • Security
    • Technical Support
    • Customer Stories
    • Gateway to Russia
    • Cloud for Startups
    • Education and Science
  • Blog
  • Pricing
  • Documentation
Yandex project
© 2025 Yandex.Cloud LLC
Yandex Message Queue
    • Quick start
    • Supported tools
      • Python
      • Node.js
      • PHP
      • Celery
      • JMS
      • Laravel
      • Symfony
      • Terraform
      • Golang
  • Access management
  • Pricing policy
  • Terraform reference
  • Monitoring metrics
  • Public materials
  • FAQ

In this article:

  • Installation
  • Getting started
  • Example
  1. Getting started
  2. Code snippets
  3. Celery

Example of using Yandex Message Queue with Celery

Written by
Yandex Cloud
Updated at March 28, 2025
  • Installation
  • Getting started
  • Example

Celery is a task queue for Python that you can use to work with Message Queue.

InstallationInstallation

Install Celery and the necessary dependencies:

pip install celery
pip install celery[sqs]
pip install boto3
pip install pycurl

Set the environment variables:

export AWS_ACCESS_KEY_ID="<access_key_ID>"
export AWS_SECRET_ACCESS_KEY="<secret_key>"
export AWS_DEFAULT_REGION="ru-central1"

Getting startedGetting started

  1. Create a service account.
  2. Assign a role to the service account.
  3. Create a static access key.

ExampleExample

In this example:

  1. A task is enqueued.
  2. The enqueued tasks are executed.

To run the example:

  1. Copy the example to a file named mq_example.py:

    from celery import Celery
    import logging
    import boto3
    
    ENDPOINT = 'message-queue.api.cloud.yandex.net:443'
    
    broker='sqs://{}'.format(ENDPOINT)
    broker_transport_options = {
        'is_secure': True,
    }
    
    app = Celery('mq_example', broker=broker)
    app.conf.broker_transport_options = broker_transport_options
    
    @app.task
    def add(a, b):
        res = a + b
        app.log.get_default_logger().info('{} + {} = {}'.format(a, b, res))
        return res
    
    if __name__ == '__main__':
        add.delay(2, 3)
        print("Task scheduled, now run 'celery worker -A mq_example' to execute it")
    
  2. Run the task handler with the command:

    celery worker -A mq_example
    
  3. Enqueue a task with the command:

    python mq_example.py
    

By default, Celery creates a Message Queue queue named celery in the folder that the service account belongs to.

Was the article helpful?

Previous
PHP
Next
JMS
Yandex project
© 2025 Yandex.Cloud LLC