Yandex Cloud
Search
Contact UsGet started
  • Blog
  • Pricing
  • Documentation
  • All Services
  • System Status
    • Featured
    • Infrastructure & Network
    • Data Platform
    • Containers
    • Developer tools
    • Serverless
    • Security
    • Monitoring & Resources
    • ML & AI
    • Business tools
  • All Solutions
    • By industry
    • By use case
    • Economics and Pricing
    • Security
    • Technical Support
    • Customer Stories
    • Gateway to Russia
    • Cloud for Startups
    • Education and Science
  • Blog
  • Pricing
  • Documentation
Yandex project
© 2025 Yandex.Cloud LLC
Yandex DataLens
    • Overview
    • Formula syntax
      • All Functions
        • Overview
        • AVG
        • AVG_IF
        • COUNT
        • COUNT_IF
        • FIRST
        • LAG
        • LAST
        • MAVG
        • MAX
        • MCOUNT
        • MIN
        • MMAX
        • MMIN
        • MSUM
        • RANK
        • RANK_DENSE
        • RANK_PERCENTILE
        • RANK_UNIQUE
        • RAVG
        • RCOUNT
        • RMAX
        • RMIN
        • RSUM
        • SUM
        • SUM_IF
      • Function Availability
    • Parameters
  • Audit Trails events
  1. Calculated fields
  2. Function reference
  3. Window functions
  4. LAG

LAG (window)

Written by
Yandex Cloud
Updated at November 6, 2024

SyntaxSyntax

Standard
Extended
LAG( value [ , offset [ , default ] ] )
LAG( value [ , offset [ , default ] ]
     [ TOTAL | WITHIN ... | AMONG ... ]
     [ ORDER BY ... ]
     [ BEFORE FILTER BY ... ]
   )

More info:

  • TOTAL, WITHIN, AMONG
  • ORDER BY
  • BEFORE FILTER BY

DescriptionDescription

Warning

The sorting order is based on the fields listed in the sorting section of the chart and in the ORDER BY clause. First, ORDER BY fields are used, and then they are complemented by the fields from the chart.

Returns value re-evaluated against the row that is offset from the current row by offset within the specified window:

  • Positive offset seeks among preceding rows.
  • Negative offset seeks among following rows.

By default offset is 1.

If there is no available value (offset reaches before the first row or after the last one), then default is returned. If default is not specified, then NULL is used.

See also AGO for a non-window function alternative.

Argument types:

  • value — Any
  • offset — Integer
  • default — Any

Return type: Same type as (value)

Note

Only constant values are accepted for the arguments (offset, default).

ExamplesExamples

Example with grouping

Source data

Date City Category Orders Profit
'2019-03-01' 'London' 'Office Supplies' 8 120.80
'2019-03-04' 'London' 'Office Supplies' 2 100.00
'2019-03-05' 'London' 'Furniture' 1 750.00
'2019-03-02' 'Moscow' 'Furniture' 2 1250.50
'2019-03-03' 'Moscow' 'Office Supplies' 4 85.00
'2019-03-01' 'San Francisco' 'Office Supplies' 23 723.00
'2019-03-01' 'San Francisco' 'Furniture' 1 1000.00
'2019-03-03' 'San Francisco' 'Furniture' 4 4000.00
'2019-03-02' 'Detroit' 'Furniture' 5 3700.00
'2019-03-04' 'Detroit' 'Office Supplies' 25 1200.00
'2019-03-04' 'Detroit' 'Furniture' 2 3500.00

Grouped by [City], [Category].

Sorted by [City], [Category].

Formulas:

  • City: [City] ;
  • Category: [Category] ;
  • Order Sum: SUM([Orders]) ;
  • LAG TOTAL: LAG(SUM([Orders]) TOTAL) ;
  • LAG WITHIN: LAG(SUM([Orders]) WITHIN [City]) ;
  • LAG AMONG: LAG(SUM([Orders]) AMONG [City]) .

Result

City Category Order Sum LAG TOTAL LAG WITHIN LAG AMONG
'Detroit' 'Furniture' 7 NULL NULL NULL
'Detroit' 'Office Supplies' 25 7 7 NULL
'London' 'Furniture' 1 25 NULL 7
'London' 'Office Supplies' 10 1 1 25
'Moscow' 'Furniture' 2 10 NULL 1
'Moscow' 'Office Supplies' 4 2 2 10
'San Francisco' 'Furniture' 5 4 NULL 2
'San Francisco' 'Office Supplies' 23 5 5 4
Example with the optional argument

Source data

Date City Category Orders Profit
'2019-03-01' 'London' 'Office Supplies' 8 120.80
'2019-03-04' 'London' 'Office Supplies' 2 100.00
'2019-03-05' 'London' 'Furniture' 1 750.00
'2019-03-02' 'Moscow' 'Furniture' 2 1250.50
'2019-03-03' 'Moscow' 'Office Supplies' 4 85.00
'2019-03-01' 'San Francisco' 'Office Supplies' 23 723.00
'2019-03-01' 'San Francisco' 'Furniture' 1 1000.00
'2019-03-03' 'San Francisco' 'Furniture' 4 4000.00
'2019-03-02' 'Detroit' 'Furniture' 5 3700.00
'2019-03-04' 'Detroit' 'Office Supplies' 25 1200.00
'2019-03-04' 'Detroit' 'Furniture' 2 3500.00

Grouped by [City].

Sorted by [City].

Formulas:

  • City: [City] ;
  • Order Sum: SUM([Orders]) ;
  • LAG 1: LAG(SUM([Orders]), 1) ;
  • LAG 2: LAG(SUM([Orders]), -2) .

Result

City Order Sum LAG 1 LAG 2
'Detroit' 32 NULL 6
'London' 11 32 28
'Moscow' 6 11 NULL
'San Francisco' 28 6 NULL
Example with ORDER BY

Source data

Date City Category Orders Profit
'2019-03-01' 'London' 'Office Supplies' 8 120.80
'2019-03-04' 'London' 'Office Supplies' 2 100.00
'2019-03-05' 'London' 'Furniture' 1 750.00
'2019-03-02' 'Moscow' 'Furniture' 2 1250.50
'2019-03-03' 'Moscow' 'Office Supplies' 4 85.00
'2019-03-01' 'San Francisco' 'Office Supplies' 23 723.00
'2019-03-01' 'San Francisco' 'Furniture' 1 1000.00
'2019-03-03' 'San Francisco' 'Furniture' 4 4000.00
'2019-03-02' 'Detroit' 'Furniture' 5 3700.00
'2019-03-04' 'Detroit' 'Office Supplies' 25 1200.00
'2019-03-04' 'Detroit' 'Furniture' 2 3500.00

Grouped by [City].

Sorted by [City].

Formulas:

  • City: [City] ;
  • Order Sum: SUM([Orders]) ;
  • LAG ORDER BY City: LAG(SUM([Orders]) ORDER BY [City] DESC) ;
  • LAG ORDER BY Order Sum: LAG(SUM([Orders]) ORDER BY [Order Sum]) .

Result

City Order Sum LAG ORDER BY City LAG ORDER BY Order Sum
'Detroit' 32 11 28
'London' 11 6 6
'Moscow' 6 28 NULL
'San Francisco' 28 NULL 11

Data source supportData source support

ClickHouse 21.8, Files, Google Sheets, Microsoft SQL Server 2017 (14.0), MySQL 5.7, Oracle Database 12c (12.1), PostgreSQL 9.3, Yandex Documents.

Was the article helpful?

Previous
FIRST
Next
LAST
Yandex project
© 2025 Yandex.Cloud LLC