Yandex Cloud
Search
Contact UsGet started
  • Blog
  • Pricing
  • Documentation
  • All Services
  • System Status
    • Featured
    • Infrastructure & Network
    • Data Platform
    • Containers
    • Developer tools
    • Serverless
    • Security
    • Monitoring & Resources
    • ML & AI
    • Business tools
  • All Solutions
    • By industry
    • By use case
    • Economics and Pricing
    • Security
    • Technical Support
    • Customer Stories
    • Gateway to Russia
    • Cloud for Startups
    • Education and Science
  • Blog
  • Pricing
  • Documentation
Yandex project
© 2025 Yandex.Cloud LLC
Yandex Data Processing
  • Getting started
    • All tutorials
      • Overview
      • Working with Hive jobs
      • Working with MapReduce jobs
      • Working with PySpark jobs
      • Working with Spark jobs
      • Running Apache Hive jobs
      • Running Spark applications
      • Running jobs from a remote host
  • Access management
  • Pricing policy
  • Terraform reference
  • Monitoring metrics
  • Audit Trails events
  • Public materials
  • FAQ

In this article:

  • Getting started
  • Running a job
  1. Tutorials
  2. Working with jobs
  3. Running jobs from a remote host

Running jobs from remote hosts that are not part of the Yandex Data Processing cluster

Written by
Yandex Cloud
Updated at April 23, 2025
  • Getting started
  • Running a job

This guide describes how to use the spark-submit utility to run Spark jobs in the Yandex Data Processing cluster from hosts that are not part of the Yandex Data Processing cluster.

Note

You can also run jobs in the Yandex Data Processing cluster from Yandex DataSphere. For more information, see this concept.

Getting startedGetting started

Create and configure a host to run jobs remotely on the Yandex Data Processing cluster:

Image version 1.4
Image version 2.0
  1. Create a VM with Ubuntu 16.04 LTS.

  2. To provide network access to the Yandex Data Processing cluster hosting the created VM, set up security groups for the cluster.

  3. Connect to the VM over SSH:

    ssh -A <username>@<VM_FDQN>
    
  4. Copy the repository settings from any of the Yandex Data Processing cluster hosts. To do this, run a sequence of commands on the VM you created.

    1. Copy the repository address:

      ssh root@<cluster_host_FQDN> \
      "cat /etc/apt/sources.list.d/yandex-dataproc.list" | \
      sudo tee /etc/apt/sources.list.d/yandex-dataproc.list
      
    2. Copy the GPG key to verify Debian package signatures:

      ssh root@<cluster_host_FQDN> \
      "cat /srv/dataproc.gpg" | sudo apt-key add -
      
    3. Update the repository cache:

      sudo apt update
      
  5. Install the required packages:

    sudo apt install openjdk-8-jre-headless hadoop-client hadoop-hdfs spark-core spark-python
    

    Note

    You only need the spark-python package to run PySpark jobs.

  6. Copy the Hadoop and Spark configuration files:

    sudo -E scp -r \
        root@<cluster_host_FQDN>:/etc/hadoop/conf/* \
        /etc/hadoop/conf/ && \
    sudo -E scp -r \
        root@<cluster_host_FQDN>:/etc/spark/conf/* \
        /etc/spark/conf/
    
  7. Create a user named sparkuser to run jobs:

    sudo useradd sparkuser && \
    ssh root@<cluster_host_FQDN> "
      hadoop fs -mkdir /user/sparkuser
      sudo -u hdfs hdfs dfs -chown sparkuser:sparkuser /user/sparkuser
      sudo -u hdfs hdfs dfs -ls /user/sparkuser
    "
    
  1. Create a VM with Ubuntu 20.04 LTS.

  2. To provide network access to the Yandex Data Processing cluster hosting the created VM, set up security groups for the cluster.

  3. Connect to the VM over SSH:

    ssh -A <username>@<VM_FDQN>
    
  4. Copy the repository settings from any of the Yandex Data Processing cluster hosts. To do this, run a sequence of commands on the VM you created.

    1. Copy the repository address:

      ssh ubuntu@<cluster_host_FQDN> \
      "cat /etc/apt/sources.list.d/yandex-dataproc.list" | \
      sudo tee /etc/apt/sources.list.d/yandex-dataproc.list
      
    2. Copy the GPG key to verify Debian package signatures:

      ssh ubuntu@<cluster_host_FQDN> \
      "cat /srv/dataproc.gpg" | sudo apt-key add -
      
    3. Update the repository cache:

      sudo apt update
      
  5. Install the required packages:

    sudo apt install openjdk-8-jre-headless hadoop-client hadoop-hdfs spark-core spark-python
    

    Note

    You only need the spark-python package to run PySpark jobs.

  6. Copy the Hadoop and Spark configuration files:

    sudo -E scp -r \
        ubuntu@<cluster_host_FQDN>:/etc/hadoop/conf/* \
        /etc/hadoop/conf/ && \
    sudo -E scp -r \
        ubuntu@<cluster_host_FQDN>:/etc/spark/conf/* \
        /etc/spark/conf/
    
  7. Create a user named sparkuser to run jobs:

    sudo useradd sparkuser && \
    ssh ubuntu@<cluster_host_FQDN> "
      hadoop fs -mkdir /user/sparkuser
      sudo -u hdfs hdfs dfs -chown sparkuser:sparkuser /user/sparkuser
      sudo -u hdfs hdfs dfs -ls /user/sparkuser
    "
    

Running a jobRunning a job

Spark job
PySpark job
  1. Run a job using the command:

    sudo -u sparkuser spark-submit \
         --master yarn \
         --deploy-mode cluster \
         --class org.apache.spark.examples.SparkPi \
             /usr/lib/spark/examples/jars/spark-examples.jar 1000
    

    Result:

    20/04/19 16:43:58 INFO client.RMProxy: Connecting to ResourceManager at rc1b-dataproc-m-ds7lj5gnnnqggbqd.mdb.yandexcloud.net/  10.13.13.18:8032
    20/04/19 16:43:58 INFO client.AHSProxy: Connecting to Application History server at rc1b-dataproc-m-ds7lj5gnnnqggbqd.mdb.yandexcloud.net/10.13.13.18:10200
    20/04/19 16:43:58 INFO yarn.Client: Requesting a new application from cluster with 4 NodeManagers
    ...
    20/04/19 16:43:58 INFO yarn.Client: Preparing resources for our AM container
    20/04/19 16:43:58 INFO yarn.Client: Uploading resource file:/usr/lib/spark/examples/jars/spark-examples.jar -> hdfs://  rc1b-dataproc-m-ds7lj5gnnnqggbqd.mdb.yandexcloud.net/user/sparkuser/.sparkStaging/application_1586176069782_0003/  spark-examples.jar
    20/04/19 16:43:58 INFO yarn.Client: Uploading resource file:/etc/spark/conf/hive-site.xml -> hdfs://  rc1b-dataproc-m-ds7lj5gnnnqggbqd.mdb.yandexcloud.net/user/sparkuser/.sparkStaging/application_1586176069782_0003/hive-site.  xml
    20/04/19 16:43:58 INFO yarn.Client: Uploading resource file:/tmp/spark-6dff3163-089b-4634-8f74-c8301d424567/  __spark_conf__8717606866210190000.zip -> hdfs://rc1b-dataproc-m-ds7lj5gnnnqggbqd.mdb.yandexcloud.net/user/sparkuser/.  sparkStaging/application_1586176069782_0003/__spark_conf__.zip
    20/04/19 16:44:00 INFO yarn.Client: Submitting application application_1586176069782_0003 to ResourceManager
    20/04/19 16:44:00 INFO impl.YarnClientImpl: Submitted application application_1586176069782_0003
    20/04/19 16:44:01 INFO yarn.Client: Application report for application_1586176069782_0003 (state: ACCEPTED)
    20/04/19 16:44:01 INFO yarn.Client:
       client token: N/A
       diagnostics: AM container is launched, waiting for AM container to Register with RM
       ApplicationMaster host: N/A
       ApplicationMaster RPC port: -1
       queue: default
       start time: 1587314639386
       final status: UNDEFINED
       tracking URL: http://rc1b-dataproc-m-ds7lj5gnnnqggbqd.mdb.yandexcloud.net:8088/proxy/application_1586176069782_0003/
       user: sparkuser
    20/04/19 16:44:05 INFO yarn.Client: Application report for application_1586176069782_0003 (state: RUNNING)
    20/04/19 16:44:05 INFO yarn.Client:
       client token: N/A
       diagnostics: N/A
       ApplicationMaster host: rc1b-dataproc-d-9cd9yoenm4npsznt.mdb.yandexcloud.net
       ApplicationMaster RPC port: 41648
       queue: default
       start time: 1587314639386
       final status: UNDEFINED
       tracking URL: http://rc1b-dataproc-m-ds7lj5gnnnqggbqd.mdb.yandexcloud.net:8088/proxy/application_1586176069782_0003/
       user: sparkuser
    20/04/19 16:44:06 INFO yarn.Client: Application report for application_1586176069782_0003 (state: RUNNING)
    20/04/19 16:44:07 INFO yarn.Client: Application report for application_1586176069782_0003 (state: RUNNING)
    20/04/19 16:44:08 INFO yarn.Client: Application report for application_1586176069782_0003 (state: RUNNING)
    20/04/19 16:44:09 INFO yarn.Client: Application report for application_1586176069782_0003 (state: FINISHED)
    20/04/19 16:44:09 INFO yarn.Client:
       client token: N/A
       diagnostics: N/A
       ApplicationMaster host: rc1b-dataproc-d-9cd9yoenm4npsznt.mdb.yandexcloud.net
       ApplicationMaster RPC port: 41648
       queue: default
       start time: 1587314639386
       final status: SUCCEEDED
       tracking URL: http://rc1b-dataproc-m-ds7lj5gnnnqggbqd.mdb.yandexcloud.net:8088/proxy/application_1586176069782_0003/
       user: sparkuser
    20/04/19 16:44:09 INFO util.ShutdownHookManager: Shutdown hook called
    20/04/19 16:44:09 INFO util.ShutdownHookManager: Deleting directory /tmp/spark-6dff3163-089b-4634-8f74-c8301d424567
    20/04/19 16:44:09 INFO util.ShutdownHookManager: Deleting directory /tmp/spark-826498b1-8dec-4229-905e-921203b7b1d0
    
  2. Check the job execution status using the yarn application utility:

    yarn application -status application_1586176069782_0003
    

    Result:

    20/04/19 16:47:03 INFO client.RMProxy: Connecting to ResourceManager at rc1b-dataproc-m-ds7lj5gn********.mdb.yandexcloud.net/10.13.13.18:8032
    20/04/19 16:47:03 INFO client.AHSProxy: Connecting to Application History server at rc1b-dataproc-m-ds7lj5gn********.mdb.yandexcloud.net/10.13.13.18:10200
    Application Report :
        Application-Id : application_1586176069782_0003
        Application-Name : org.apache.spark.examples.SparkPi
        Application-Type : SPARK
        User : sparkuser
        Queue : default
        Application Priority : 0
        Start-Time : 1587314639386
        Finish-Time : 1587314647621
        Progress : 100%
        State : FINISHED
        Final-State : SUCCEEDED
        Tracking-URL : rc1b-dataproc-m-ds7lj5gn********.mdb.yandexcloud.net:18080/history/application_1586176069782_0003/1
        RPC Port : 41648
        AM Host : rc1b-dataproc-d-9cd9yoen********.mdb.yandexcloud.net
        Aggregate Resource Allocation : 141510 MB-seconds, 11 vcore-seconds
        Aggregate Resource Preempted : 0 MB-seconds, 0 vcore-seconds
        Log Aggregation Status : SUCCEEDED
        Diagnostics :
        Unmanaged Application : false
        Application Node Label Expression : <Not set>
        AM container Node Label Expression : <DEFAULT_PARTITION>
        TimeoutType : LIFETIME    ExpiryTime : UNLIMITED    RemainingTime : -1seconds
    
  3. View logs from all running containers using the yarn logs utility:

    sudo -u sparkuser yarn logs \
         -applicationId application_1586176069782_0003 | grep "Pi is"
    

    Result:

    Pi is roughly 3.14164599141646
    
  1. On the VM, create a file named month_stat.py with the following code:

    import sys
    
    from pyspark import SparkContext, SparkConf
    from pyspark.sql import SQLContext
    
    def main():
        conf = SparkConf().setAppName("Month Stat - Python")
        conf.set("fs.s3a.aws.credentials.provider", "org.apache.hadoop.fs.s3a.AnonymousAWSCredentialsProvider")
        sc = SparkContext(conf=conf)
    
        sql = SQLContext(sc)
        df = sql.read.parquet("s3a://yc-mdb-examples/dataproc/example01/set01")
        defaultFS = sc._jsc.hadoopConfiguration().get("fs.defaultFS")
        month_stat = df.groupBy("Month").count()
        month_stat.repartition(1).write.format("csv").save(defaultFS+"/tmp/month_stat")
    
    if __name__ == "__main__":
            main()
    
  2. Copy the month_stat.py file to the cluster's master host:

    sudo -E scp month_stat.py <username>@<cluster_host_FQDN>:~/month_stat.py
    

    For image version 2.0, specify the ubuntu user; for image version 1.4, specify root.

  3. Run the application:

    sudo -u sparkuser spark-submit \
         --master yarn \
         --deploy-mode cluster \
         month_stat.py
    
  4. The result of running the application will be exported to HDFS on the cluster. You can list the resulting files using the command:

    ssh <username>@<cluster_host_FQDN> "hdfs dfs -ls /tmp/month_stat"
    

    For image version 2.0, specify the ubuntu user; for image version 1.4, specify root.

Note

You can view the job logs and search data in them using Yandex Cloud Logging. For more information, see Working with logs.

Was the article helpful?

Previous
Running Spark applications
Next
Using Object Storage in Yandex Data Processing
Yandex project
© 2025 Yandex.Cloud LLC