Streaming speech recognition with auto language detection in the API v3
The example shows how you can recognize speech in LPCM format in real time using the SpeechKit API v3 with auto language detection.
The example uses the following parameters:
- Recognition language:
auto(automatic language detection). - Format of the audio stream: LPCM with a sampling rate of 8000 Hz.
- Number of audio channels: 1 (default).
- Other parameters are left at their defaults.
Prepare the required resources
- Create a service account and assign the
ai.speechkit-stt.userrole to it. - Get an IAM token for the service account and save it.
- Download a sample
audio file for recognition or generate your own one.
Create an application for streaming speech recognition
To implement an example from this section:
-
Clone the Yandex Cloud API
repository:git clone https://github.com/yandex-cloud/cloudapi -
Create a client application:
Python 3-
Use the pip package
manager to install thegrpcio-toolspackage:pip install grpcio-tools -
Go to the directory hosting the cloned Yandex Cloud API repository, create a directory named
output, and generate the client interface code there:cd <path_to_cloudapi_directory> mkdir output python3 -m grpc_tools.protoc -I . -I third_party/googleapis \ --python_out=output \ --grpc_python_out=output \ google/api/http.proto \ google/api/annotations.proto \ yandex/cloud/api/operation.proto \ google/rpc/status.proto \ yandex/cloud/operation/operation.proto \ yandex/cloud/validation.proto \ yandex/cloud/ai/stt/v3/stt_service.proto \ yandex/cloud/ai/stt/v3/stt.protoThis will create the
stt_pb2.py,stt_pb2_grpc.py,stt_service_pb2.py, andstt_service_pb2_grpc.pyclient interface files, as well as dependency files, in theoutputdirectory. -
Create a file (e.g.,
test.py) in the root of theoutputdirectory, and add the following code to it:#coding=utf8 import argparse import grpc import yandex.cloud.ai.stt.v3.stt_pb2 as stt_pb2 import yandex.cloud.ai.stt.v3.stt_service_pb2_grpc as stt_service_pb2_grpc CHUNK_SIZE = 4000 def gen(audio_file_name): # Specify recognition settings. recognize_options = stt_pb2.StreamingOptions( recognition_model=stt_pb2.RecognitionModelOptions( audio_format=stt_pb2.AudioFormatOptions( raw_audio=stt_pb2.RawAudio( audio_encoding=stt_pb2.RawAudio.LINEAR16_PCM, sample_rate_hertz=8000, audio_channel_count=1 ) ), # Specify automatic language detection. language_restriction=stt_pb2.LanguageRestrictionOptions( restriction_type=stt_pb2.LanguageRestrictionOptions.WHITELIST, language_code=['auto'] ), # Select the streaming recognition model. audio_processing_type=stt_pb2.RecognitionModelOptions.REAL_TIME ) ) # Send a message with recognition settings. yield stt_pb2.StreamingRequest(session_options=recognize_options) # Read the audio file and send its contents in chunks. with open(audio_file_name, 'rb') as f: data = f.read(CHUNK_SIZE) while data != b'': yield stt_pb2.StreamingRequest(chunk=stt_pb2.AudioChunk(data=data)) data = f.read(CHUNK_SIZE) # Provide api_key instead of iam_token when authenticating with an API key # as a service account. # def run(api_key, audio_file_name): def run(iam_token, audio_file_name): # Establish a connection with the server. cred = grpc.ssl_channel_credentials() channel = grpc.secure_channel('stt.api.cloud.yandex.net:443', cred) stub = stt_service_pb2_grpc.RecognizerStub(channel) # Send data for recognition. it = stub.RecognizeStreaming(gen(audio_file_name), metadata=( # Parameters for authentication with an IAM token ('authorization', f'Bearer {iam_token}'), # Parameters for authentication with an API key as a service account # ('authorization', f'Api-Key {api_key}'), )) # Process the server responses and output the result to the console. try: for r in it: event_type, alternatives = r.WhichOneof('Event'), None if event_type == 'partial' and len(r.partial.alternatives) > 0: alternatives = [a.text for a in r.partial.alternatives] if event_type == 'final': alternatives = [a.text for a in r.final.alternatives] # Getting language labels: langs = [a.languages for a in r.final.alternatives] if event_type == 'final_refinement': alternatives = [a.text for a in r.final_refinement.normalized_text.alternatives] print(f'type={event_type}, alternatives={alternatives}') # Printing language labels to the console for final versions: if event_type == 'final': print(f'Language labels:') for lang in langs: for line in lang: words=f'{line}'.splitlines() for word in words: print(f' {word}', end="") print() except grpc._channel._Rendezvous as err: print(f'Error code {err._state.code}, message: {err._state.details}') raise err if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--token', required=True, help='IAM token or API key') parser.add_argument('--path', required=True, help='audio file path') args = parser.parse_args() run(args.token, args.path)Where:
-
-
Use the IAM token of the service account:
export IAM_TOKEN=<service_account_IAM_token> -
Run the file you created:
python3 output/test.py --token ${IAM_TOKEN} --path <path_to_speech.pcm_file>Where
--pathis the path to the audio file for recognition.Result:
type=status_code, alternatives=None type=partial, alternatives=None type=partial, alternatives=['hello'] type=final, alternatives=['hello world'] Language guess: language_code: "ru-RU" probability: 1 type=final_refinement, alternatives=['hello world'] type=eou_update, alternatives=None type=partial, alternatives=None type=status_code, alternatives=None