Yandex Cloud
Search
Contact UsGet started
  • Blog
  • Pricing
  • Documentation
  • All Services
  • System Status
    • Featured
    • Infrastructure & Network
    • Data Platform
    • Containers
    • Developer tools
    • Serverless
    • Security
    • Monitoring & Resources
    • ML & AI
    • Business tools
  • All Solutions
    • By industry
    • By use case
    • Economics and Pricing
    • Security
    • Technical Support
    • Customer Stories
    • Cloud credits to scale your IT product
    • Gateway to Russia
    • Cloud for Startups
    • Education and Science
    • Yandex Cloud Partner program
  • Blog
  • Pricing
  • Documentation
© 2025 Direct Cursus Technology L.L.C.
Yandex Data Processing
  • Getting started
    • Resource relationships
      • Active host classes
    • Runtime environment
    • Yandex Data Processing component interfaces and ports
    • Jobs in Yandex Data Processing
    • Spark jobs
    • Automatic scaling
    • Decommissioning subclusters and hosts
    • Networking in Yandex Data Processing
    • Maintenance
    • Quotas and limits
    • Storage in Yandex Data Processing
    • Component properties
    • Apache Iceberg™ in Yandex Data Processing
    • Delta Lake in Yandex Data Processing
    • Logs in Yandex Data Processing
    • Initialization scripts
  • Access management
  • Pricing policy
  • Terraform reference
  • Monitoring metrics
  • Audit Trails events
  • Public materials
  • FAQ
  1. Concepts
  2. Host classes
  3. Active host classes

Yandex Data Processing host classes

Written by
Yandex Cloud
Updated at February 18, 2025

The host class determines the computing power allocated for each host in a cluster. When you change the host class for a cluster, all existing hosts change accordingly.

The available storage size does not depend on the host class. For storage limitations, see Quotas and limits.

Available host classesAvailable host classes

Hosts in Yandex Data Processing clusters are deployed on Yandex Compute Cloud VMs. You can create these VMs on any platforms Compute Cloud supports. To learn more about the platforms, see Platforms.

A suitable host class depends on driver deploy mode:

  • In deployMode=cluster mode, when the driver is deployed on one of the cluster's compute hosts, 4-8 CPU cores and 16 GB RAM are sufficient for the subcluster with the master host.
  • In deployMode=client mode, when the driver is deployed on the cluster's master host, the computing power depends on the job logic and the number of concurrent jobs.

For more information about driver deploy modes and computing resource consumption, see Resource allocation.

The full list of possible host configurations on each platform is provided below.

Note

The Intel Broadwell platform is not available for clusters with hosts residing in the ru-central1-d availability zone.

Alert

Starting January 1, 2024, the following existing host classes are deprecated: b1.nano, b1.micro, b1.small, b2.nano, b2.micro, and b2.small. New hosts of these classes cannot be created since June 20, 2023.

Host class name Number of CPUs CPU performance RAM, GB Disk
size, GB
Intel Broadwell
g1.small 8 100% 96 20 - 8184
m1.micro 2 100% 16 20 - 8184
m1.small 4 100% 32 20 - 8184
m1.medium 6 100% 48 20 - 8184
m1.large 8 100% 64 20 - 8184
m1.xlarge 12 100% 96 20 - 8184
m1.2xlarge 16 100% 128 20 - 8184
m1.3xlarge 24 100% 192 20 - 8184
m1.4xlarge 32 100% 256 20 - 8184
s1.nano 1 100% 4 20 - 8184
s1.micro 2 100% 8 20 - 8184
s1.small 4 100% 16 20 - 8184
s1.medium 8 100% 32 20 - 8184
s1.large 16 100% 64 20 - 8184
s1.xlarge 32 100% 128 20 - 8184
Intel Cascade Lake
b2.medium 2 50% 4 20 - 8184
m2.micro 2 100% 16 20 - 8184
m2.small 4 100% 32 20 - 8184
m2.medium 6 100% 48 20 - 8184
m2.large 8 100% 64 20 - 8184
m2.xlarge 12 100% 96 20 - 8184
m2.2xlarge 16 100% 128 20 - 8184
m2.3xlarge 24 100% 192 20 - 8184
m2.4xlarge 32 100% 256 20 - 8184
m2.5xlarge 40 100% 320 20 - 8184
m2.6xlarge 48 100% 384 20 - 8184
m2.7xlarge 56 100% 448 20 - 8184
m2.8xlarge 64 100% 512 20 - 8184
s2.micro 2 100% 8 20 - 8184
s2.small 4 100% 16 20 - 8184
s2.medium 8 100% 32 20 - 8184
s2.large 12 100% 48 20 - 8184
s2.xlarge 16 100% 64 20 - 8184
s2.2xlarge 24 100% 96 20 - 8184
s2.3xlarge 32 100% 128 20 - 8184
s2.4xlarge 40 100% 160 20 - 8184
s2.5xlarge 48 100% 192 20 - 8184
s2.6xlarge 64 100% 256 20 - 8184
Intel Ice Lake
b3-c1-m4 2 50% 4 20 - 8184
c3-c2-m4 2 100% 4 20 - 8184
c3-c4-m8 4 100% 8 20 - 8184
c3-c8-m16 8 100% 16 20 - 8184
c3-c12-m24 12 100% 24 20 - 8184
c3-c16-m32 16 100% 32 20 - 8184
c3-c24-m48 24 100% 48 20 - 8184
c3-c32-m64 32 100% 64 20 - 8184
c3-c40-m80 40 100% 80 20 - 8184
c3-c48-m96 48 100% 96 20 - 8184
c3-c64-m128 64 100% 128 20 - 8184
c3-c80-m160 80 100% 160 20 - 8184
c3-c96-m192 96 100% 192 20 - 8184
s3-c2-m8 2 100% 8 20 - 8184
s3-c4-m16 4 100% 16 20 - 8184
s3-c8-m32 8 100% 32 20 - 8184
s3-c12-m48 12 100% 48 20 - 8184
s3-c16-m64 16 100% 64 20 - 8184
s3-c24-m96 24 100% 96 20 - 8184
s3-c32-m128 32 100% 128 20 - 8184
s3-c40-m160 40 100% 160 20 - 8184
s3-c48-m192 48 100% 192 20 - 8184
s3-c64-m256 64 100% 256 20 - 8184
s3-c80-m320 80 100% 320 20 - 8184
s3-c96-m576 96 100% 576 20 - 8184
m3-c2-m16 2 100% 16 20 - 8184
m3-c4-m32 4 100% 32 20 - 8184
m3-c6-m48 6 100% 48 20 - 8184
m3-c8-m64 8 100% 64 20 - 8184
m3-c12-m96 12 100% 96 20 - 8184
m3-c16-m128 16 100% 128 20 - 8184
m3-c24-m192 24 100% 192 20 - 8184
m3-c32-m256 32 100% 256 20 - 8184
m3-c40-m320 40 100% 320 20 - 8184
m3-c48-m384 48 100% 384 20 - 8184
m3-c56-m448 56 100% 448 20 - 8184
m3-c64-m512 64 100% 512 20 - 8184
m3-c80-m640 80 100% 640 20 - 8184

Was the article helpful?

Previous
Resource relationships
Next
Before June 20, 2023
© 2025 Direct Cursus Technology L.L.C.